Содержание
- Понятие освобождения от иррациональности в знаменателе
- Основные действия для избавления от иррациональности в знаменателе дроби
- Как преобразовать выражение в знаменателе дроби
- Избавление от иррациональности методом умножения на корень
- Избавление от иррациональности методом умножения на сопряженное выражение
- Преобразование дробей с иррациональностью в знаменателе с использованием формул суммы и разности кубов
- Последовательное применение различных способов преобразования
- Формула
- Свойства
- Примеры решений
Нам понадобится несколько формул, которые я запишу ниже:
Так как $lim_left(sqrt[3]<5x-12>-sqrt[3]
ight)=0$ и $lim_(16-x^2)=0$, то мы имеем дело с неопределённостью вида $frac<0><0>$. Чтобы избавиться от иррациональности, вызвавшей эту неопределенность, нужно домножить числитель и знаменатель на выражение, сопряжённое к числителю. Формула №1 здесь уже не поможет, ибо домножение на $sqrt[3]<5x-12>+sqrt[3]$ приведёт к такому результату:
Как видите, такое домножение не избавит нас от разности корней, вызывающей неопределённость $frac<0><0>$. Нужно домножить на иное выражение. Это выражение должно быть таким, чтобы после домножения на него исчезла разность кубических корней. А кубический корень может "убрать" только третья степень, посему нужно использовать формулу №2. Подставив в правую часть этой формулы $a=sqrt[3]<5x-12>$, $b=sqrt[3]$, получим:
Итак, после домножения на $sqrt[3]<(5x-12)^2>+sqrt[3]<5x-12>cdot sqrt[3]+sqrt[3]<(x+4)^2>$ разность кубических корней исчезла. Именно выражение $sqrt[3]<(5x-12)^2>+sqrt[3]<5x-12>cdot sqrt[3]+sqrt[3]<(x+4)^2>$ будет сопряжённым к выражению $sqrt[3]<5x-12>-sqrt[3]$. Вернемся к нашему пределу и осуществим умножение числителя и знаменателя на выражение, сопряжённое числителю $sqrt[3]<5x-12>-sqrt[3]$:
Задача практически решена. Осталось лишь учесть, что $16-x^2=-(x^2-16)=-(x-4)(x+4)$ (см. формулу №1). Кроме того $4x-16=4(x-4)$, поэтому последний предел перепишем в такой форме:
Рассмотрим ещё один пример (пример №5) в данной части, где применим формулу №4. Принципиально схема решения ничем не отличается от предыдущих примеров, – разве что сопряжённое выражение будет иметь иную структуру. Кстати, стоит отметить, что в типовых расчётах и контрольных работах часто встречаются задачи, когда, например, в числителе размещены выражения с кубическим корнем, а в знаменателе – с корнем квадратным. В этом случае приходится домножать и числитель и знаменатель на различные сопряжённые выражения. Например, для при вычислении предела $lim_frac<sqrt[3]-2><sqrt-3>$, содержащего неопределённость вида $frac<0><0>$, домножение будет иметь вид:
Все преобразования, применённые выше, уже были рассмотрены ранее, поэтому полагаю, особых неясностей здесь нет. Впрочем, если решение вашего аналогичного примера вызывает вопросы, прошу отписать об этом на форум.
Так как $lim_(sqrt[4]<5x+6>-2)=0$ и $lim_(x^3-8)=0$, то мы имеем дело с неопределенностью $frac<0><0>$. Для раскрытия оной неопределённости используем формулу №4. Сопряжённое выражение к числителю имеет вид
Домножая числитель и знаменатель дроби $frac<sqrt[4]<5x+6>-2>$ на указанное выше сопряжённое выражение будем иметь:
Так как $5x-10=5cdot(x-2)$ и $x^3-8=x^3-2^3=(x-2)(x^2+2x+4)$ (см. формулу №2), то:
Так как $lim_(sqrt[5]<3x-5>-1)=0$ и $lim_(sqrt[3]<3x-5>-1)=0$, то мы имеем дело с неопределенностью $frac<0><0>$. В таких ситуациях, когда выражения под корнями одинаковы, можно использовать способ замены. Требуется заменить выражение под корнем (т.е. $3x-5$), введя некоторую новую переменную. Однако простое использование новой буквы ничего не даст. Представьте, что мы просто заменили выражение $3x-5$ буквой $t$. Тогда дробь, стоящая под пределом, станет такой: $frac<sqrt[5]-1><sqrt[3]-1>$. Иррациональность никуда не исчезла, – лишь несколько видоизменилась, что нисколько не облегчило задачу.
Здесь уместно вспомнить, что корень может убрать лишь степень. Но какую именно степень использовать? Вопрос не тривиален, ведь у нас два корня. Один корень пятого, а другой – третьего порядка. Степень должна быть такой, чтобы одновременно убрать оба корня! Нам нужно натуральное число, которое одновременно делилось бы на $3$ и на $5$. Таких чисел бесконечное множество, но наименьшее из них – число $15$. Его называют наименьшим общим кратным чисел $3$ и $5$. И замена должна быть такой: $t^<15>=3x-5$. Посмотрите, что такая замена сделает с корнями:
Корни исчезли, остались лишь степени. И дробь $frac<sqrt[5]<3x-5>-1><sqrt[3]<3x-5>-1>$ станет такой:
Однако это ещё не всё. Переменная $x o 2$, но к чему стремится переменная $t$? Рассудим так: если $t^<15>=3x-5$, то $t=sqrt[15]<3x-5>$. Так как $x o 2$, то $<(3x-5)> o 1$, $sqrt[15]<3x-5> o 1$, посему $t o 1$. Теперь можем вернуться к нашему пределу:
Корни исчезли, – но неопределённость $frac<0><0>$ осталась. Чтобы убрать её, нужно учесть, что при $t=1$ имеем $t^3-1=1^3-1=0$ и $t^5-1=1^5-1=0$. Из сказанного следует, что $t=1$ — корень многочленов $t^3-1$ и $t^5-1$. Следовательно, оные многочлены делятся на $t-1$. Разделим многочлен $t^5-1$ на $t-1$ с помощью схемы Горнера:
Читайте также: Как обмануть видеокамеры на работе
Результаты применения схемы Горнера можно записать так: $t^5-1=(t-1)(t^4+t^3+t^2+t+1)$. К многочлену $t^3-1$ можно также применить схему Горнера, но лучше использовать формулу №2: $t^3-1=t^3-1^3=(t-1)(t^2+t+1)$. Вернёмся к рассматриваемому пределу:
При изучении преобразований иррационального выражения очень важным является вопрос о том, как освободиться от иррациональности в знаменателе дроби. Целью этой статьи является объяснение этого действия на конкретных примерах задач. В первом пункте мы рассмотрим основные правила данного преобразования, а во втором – характерные примеры с подробными пояснениями.
Понятие освобождения от иррациональности в знаменателе
Начнем с пояснения, в чем вообще заключается смысл такого преобразования. Для этого вспомним следующие положения.
Об иррациональности в знаменателе дроби можно говорить в том случае, если там присутствует радикал, он же знак корня. Числа, которые записаны при помощи такого знака, часто относятся к числу иррациональных. Примерами могут быть 1 2 , — 2 x + 3 , x + y x — 2 · x · y + 1 , 11 7 — 5 . К дробям с иррациональными знаменателями также относятся те, что имеют там знаки корней различной степени (квадратный, кубический и т.д.), например, 3 4 3 , 1 x + x · y 4 + y . Избавляться от иррациональности следует для упрощения выражения и облегчения дальнейших вычислений. Сформулируем основное определение:
Освободиться от иррациональности в знаменателе дроби – значит преобразовать ее, заменив на тождественно равную дробь, в знаменателе которой не содержится корней и степеней.
Такое действие может называться освобождением или избавлением от иррациональности, смысл при этом остается тем же. Так, переход от 1 2 к 2 2 , т.е. к дроби с равным значением без знака корня в знаменателе и будет нужным нам действием. Приведем еще один пример: у нас есть дробь x x — y . Проведем необходимые преобразования и получим тождественно равную ей дробь x · x + y x — y , освободившись от иррациональности в знаменателе.
После формулировки определения мы можем переходить непосредственно к изучению последовательности действий, которые нужно выполнить для такого преобразования.
Основные действия для избавления от иррациональности в знаменателе дроби
Для освобождения от корней нужно провести два последовательных преобразования дроби: умножить обе части дроби на число, отличное от нуля, а затем преобразовать выражение, получившееся в знаменателе. Рассмотрим основные случаи.
В наиболее простом случае можно обойтись преобразованием знаменателя. Например, мы можем взять дробь со знаменателем, равным корню из 9 . Вычислив 9 , мы запишем в знаменателе 3 и избавимся таким образом от иррациональности.
Однако гораздо чаще приходится предварительно умножать числитель и знаменатель на такое число, которое потом позволит привести знаменатель к нужному виду (без корней). Так, если мы выполним умножение 1 x + 1 на x + 1 , мы получим дробь x + 1 x + 1 · x + 1 и сможем заменить выражение в ее знаменателе на x + 1 . Так мы преобразовали 1 x + 1 в x + 1 x + 1 , избавившись от иррациональности.
Иногда преобразования, которые нужно выполнить, бывают довольно специфическими. Разберем несколько наглядных примеров.
Как преобразовать выражение в знаменателе дроби
Как мы уже говорили, проще всего выполнить преобразование знаменателя.
Условие: освободите дробь 1 2 · 18 + 50 от иррациональности в знаменателе.
Решение
Для начала раскроем скобки и получим выражение 1 2 · 18 + 2 · 50 . Используя основные свойства корней, перейдем к выражению 1 2 · 18 + 2 · 50 . Вычисляем значения обоих выражений под корнями и получаем 1 36 + 100 . Здесь уже можно извлечь корни. В итоге у нас получилась дробь 1 6 + 10 , равная 1 16 . На этом преобразования можно закончить.
Запишем ход всего решения без комментариев:
1 2 · 18 + 50 = 1 2 · 18 + 2 · 50 = = 1 2 · 18 + 2 · 50 = 1 36 + 100 = 1 6 + 10 = 1 16
Ответ: 1 2 · 18 + 50 = 1 16 .
Условие: дана дробь 7 — x ( x + 1 ) 2 . Избавьтесь от иррациональности в знаменателе.
Решение
Ранее в статье, посвященной преобразованиям иррациональных выражений с применением свойств корней, мы упоминали, что при любом A и четных n мы можем заменить выражение A n n на | A | на всей области допустимых значений переменных. Следовательно, в нашем случае мы можем записать так: 7 — x x + 1 2 = 7 — x x + 1 . Таким способом мы освободились от иррациональности в знаменателе.
Ответ: 7 — x x + 1 2 = 7 — x x + 1 .
Избавление от иррациональности методом умножения на корень
Если в знаменателе дроби находится выражение вида A и само выражение A не имеет знаков корней, то мы можем освободиться от иррациональности, просто умножив обе части исходной дроби на A . Возможность этого действия определяется тем, что A на области допустимых значений не будет обращаться в 0 . После умножения в знаменателе окажется выражение вида A · A , которое легко избавить от корней: A · A = A 2 = A . Посмотрим, как правильно применять этот метод на практике.
Читайте также: Как посмотреть временные файлы в windows 7
Условие: даны дроби x 3 и — 1 x 2 + y — 4 . Избавьтесь от иррациональности в их знаменателях.
Решение
Выполним умножение первой дроби на корень второй степени из 3 . Получим следующее:
x 3 = x · 3 3 · 3 = x · 3 3 2 = x · 3 3
Во втором случае нам надо выполнить умножение на x 2 + y — 4 и преобразовать получившееся выражение в знаменателе:
— 1 x 2 + y — 4 = — 1 · x 2 + y — 4 x 2 + y — 4 · x 2 + y — 4 = = — x 2 + y — 4 x 2 + y — 4 2 = — x 2 + y — 4 x 2 + y — 4
Ответ: x 3 = x · 3 3 и — 1 x 2 + y — 4 = — x 2 + y — 4 x 2 + y — 4 .
Если же в знаменателе исходной дроби имеются выражения вида A n m или A m n (при условии натуральных m и n ), нам нужно выбрать такой множитель, чтобы получившееся выражение можно было преобразовать в A n n · k или A n · k n (при натуральном k ). После этого избавиться от иррациональности будет несложно. Разберем такой пример.
Условие: даны дроби 7 6 3 5 и x x 2 + 1 4 15 . Избавьтесь от иррациональности в знаменателях.
Решение
Нам нужно взять натуральное число, которое можно разделить на пять, при этом оно должно быть больше трех. Чтобы показатель 6 стал равен 5 , нам надо выполнить умножение на 6 2 5 . Следовательно, обе части исходной дроби нам придется умножить на 6 2 5 :
7 6 3 5 = 7 · 6 2 5 6 3 5 · 6 2 5 = 7 · 6 2 5 6 3 5 · 6 2 = 7 · 6 2 5 6 5 5 = = 7 · 6 2 5 6 = 7 · 36 5 6
Во втором случае нам потребуется число, большее 15 , которое можно разделить на 4 без остатка. Берем 16 . Чтобы получить такой показатель степени в знаменателе, нам надо взять в качестве множителя x 2 + 1 4 . Уточним, что значение этого выражения не будет 0 ни в каком случае. Вычисляем:
x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 15 · x 2 + 1 4 = = x · x 2 + 1 4 x 2 + 1 4 16 = x · x 2 + 1 4 x 2 + 1 4 4 4 = x · x 2 + 1 4 x 2 + 1 4
Ответ: 7 6 3 5 = 7 · 36 5 6 и x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 .
Избавление от иррациональности методом умножения на сопряженное выражение
Следующий метод подойдет для тех случаев, когда в знаменателе исходной дроби стоят выражения a + b , a — b , a + b , a — b , a + b , a — b . В таких случаях нам надо взять в качестве множителя сопряженное выражение. Поясним смысл этого понятия.
Для первого выражения a + b сопряженным будет a — b , для второго a — b – a + b . Для a + b – a — b , для a — b – a + b , для a + b – a — b , а для a — b – a + b . Иначе говоря, сопряженное выражение – это такое выражение, в котором перед вторым слагаемым стоит противоположный знак.
Давайте рассмотрим, в чем именно заключается данный метод. Допустим, у нас есть произведение вида a — b · a + b . Оно может быть заменено разностью квадратов a — b · a + b = a 2 — b 2 , после чего мы переходим к выражению a − b , лишенному радикалов. Таким образом, мы освободились от иррациональности в знаменателе дроби с помощью умножения на сопряженное выражение. Возьмем пару наглядных примеров.
Условие: избавьтесь от иррациональности в выражениях 3 7 — 3 и x — 5 — 2 .
Решение
В первом случае берем сопряженное выражение, равное 7 + 3 . Теперь производим умножение обеих частей исходной дроби на него:
3 7 — 3 = 3 · 7 + 3 7 — 3 · 7 + 3 = 3 · 7 + 3 7 2 — 3 2 = = 3 · 7 + 3 7 — 9 = 3 · 7 + 3 — 2 = — 3 · 7 + 3 2
Во втором случае нам понадобится выражение — 5 + 2 , которое является сопряженным выражению — 5 — 2 . Умножим на него числитель и знаменатель и получим:
x — 5 — 2 = x · — 5 + 2 — 5 — 2 · — 5 + 2 = = x · — 5 + 2 — 5 2 — 2 2 = x · — 5 + 2 5 — 2 = x · 2 — 5 3
Возможно также перед умножением выполнить преобразование: если мы вынесем из знаменателя сначала минус, считать будет удобнее:
x — 5 — 2 = — x 5 + 2 = — x · 5 — 2 5 + 2 · 5 — 2 = = — x · 5 — 2 5 2 — 2 2 = — x · 5 — 2 5 — 2 = — x · 5 — 2 3 = = x · 2 — 5 3
Ответ: 3 7 — 3 = — 3 · 7 + 3 2 и x — 5 — 2 = x · 2 — 5 3 .
Важно обратить внимание на то, чтобы выражение, полученное в итоге умножения, не обращалось в 0 ни при каких переменных из области допустимых значений для данного выражения.
Условие: дана дробь x x + 4 . Преобразуйте ее так, чтобы в знаменателе не было иррациональных выражений.
Решение
Начнем с нахождения области допустимых значений переменной x . Она определена условиями x ≥ 0 и x + 4 ≠ 0 . Из них можно сделать вывод, что нужная область представляет собой множество x ≥ 0 .
Сопряженное знаменателю выражение представляет собой x — 4 . Когда мы можем выполнить умножение на него? Только в том случае, если x — 4 ≠ 0 . На области допустимых значений это будет равносильно условию x≠16. В итоге мы получим следующее:
Читайте также: Как обратиться за помощью в контакте
x x + 4 = x · x — 4 x + 4 · x — 4 = = x · x — 4 x 2 — 4 2 = x · x — 4 x — 16
Если x будет равен 16 , то мы получим:
x x + 4 = 16 16 + 4 = 16 4 + 4 = 2
Следовательно, x x + 4 = x · x — 4 x — 16 при всех значениях x , принадлежащих области допустимых значений, за исключением 16 . При x = 16 получим x x + 4 = 2 .
Ответ: x x + 4 = x · x — 4 x — 16 , x ∈ [ 0 , 16 ) ∪ ( 16 , + ∞ ) 2 , x = 16 .
Преобразование дробей с иррациональностью в знаменателе с использованием формул суммы и разности кубов
В предыдущем пункте мы выполняли умножение на сопряженные выражения с тем, чтобы потом использовать формулу разности квадратов. Иногда для избавления от иррациональности в знаменателе полезно воспользоваться и другими формулами сокращенного умножения, например, разностью кубов a 3 − b 3 = ( a − b ) · ( a 2 + a · b + b 2 ) . Этой формулой удобно пользоваться, если в знаменателе исходной дроби стоят выражения с корнями третьей степени вида A 3 — B 3 , A 3 2 + A 3 · B 3 + B 3 2 . и т.д. Чтобы применить ее, нам нужно умножить знаменатель дроби на неполный квадрат суммы A 3 2 + A 3 · B 3 + B 3 2 или разность A 3 — B 3 . Точно также можно применить и формулу суммы a 3 + b 3 = ( а ) · ( a 2 − a · b + b 2 ) .
Условие: преобразуйте дроби 1 7 3 — 2 3 и 3 4 — 2 · x 3 + x 2 3 так, чтобы избавиться от иррациональности в знаменателе.
Решение
Для первой дроби нам нужно воспользоваться методом умножения обеих частей на неполный квадрат суммы 7 3 и 2 3 , поскольку потом мы сможем выполнить преобразование с помощью формулы разности кубов:
1 7 3 — 2 3 = 1 · 7 3 2 + 7 3 · 2 3 + 2 3 2 7 3 — 2 3 · 7 3 2 + 7 3 · 2 3 + 2 3 2 = = 7 3 2 + 7 3 · 2 3 + 2 3 2 7 3 3 — 2 3 3 = 7 2 3 + 7 · 2 3 + 2 2 3 7 — 2 = = 49 3 + 14 3 + 4 3 5
Во второй дроби представим знаменатель как 2 2 — 2 · x 3 + x 3 2 . В этом выражении виден неполный квадрат разности 2 и x 3 , значит, мы можем умножить обе части дроби на сумму 2 + x 3 и воспользоваться формулой суммы кубов. Для этого должно быть соблюдено условие 2 + x 3 ≠ 0 , равносильное x 3 ≠ — 2 и x ≠ − 8 :
3 4 — 2 · x 3 + x 2 3 = 3 2 2 — 2 · x 3 + x 3 2 = = 3 · 2 + x 3 2 2 — 2 · x 3 + x 3 2 · 2 + x 3 = 6 + 3 · x 3 2 3 + x 3 3 = = 6 + 3 · x 3 8 + x
Подставим в дробь — 8 и найдем значение:
3 4 — 2 · 8 3 + 8 2 3 = 3 4 — 2 · 2 + 4 = 3 4
Подведем итоги. При всех x , входящих в область значений исходной дроби (множество R ), за исключением — 8 , мы получим 3 4 — 2 · x 3 + x 2 3 = 6 + 3 · x 3 8 + x . Если x = 8 , то 3 4 — 2 · x 3 + x 2 3 = 3 4 .
Ответ: 3 4 — 2 · x 3 + x 2 3 = 6 + 3 · x 3 8 + x , x ≠ 8 3 4 , x = — 8 .
Последовательное применение различных способов преобразования
Часто на практике встречаются более сложные примеры, когда мы не можем освободиться от иррациональности в знаменателе с помощью всего одного метода. Для них нужно последовательно выполнять несколько преобразований или подбирать нестандартные решения. Возьмем одну такую задачу.
Условие: преобразуйте 5 7 4 — 2 4 , чтобы избавиться от знаков корней в знаменателе.
Решение
Выполним умножение обеих частей исходной дроби на сопряженное выражение 7 4 + 2 4 с ненулевым значением. Получим следующее:
5 7 4 — 2 4 = 5 · 7 4 + 2 4 7 4 — 2 4 · 7 4 + 2 4 = = 5 · 7 4 + 2 4 7 4 2 — 2 4 2 = 5 · 7 4 + 2 4 7 — 2
А теперь применим тот же способ еще раз:
5 · 7 4 + 2 4 7 — 2 = 5 · 7 4 + 2 4 · 7 + 2 7 — 2 · 7 + 2 = = 5 · 7 4 + 2 4 · 7 + 2 7 2 — 2 2 = 5 · 7 4 + 7 4 · 7 + 2 7 — 2 = = 5 · 7 4 + 2 4 · 7 + 2 5 = 7 4 + 2 4 · 7 + 2
Ответ: 5 7 4 — 2 4 = 7 4 + 2 4 · 7 + 2 .
Формула
Комплексно-сопряженным числом к числу $ z = a + bi $ называется число вида: $$ z = a-bi $$ Другими словами такие числа отличаются друг от друга только противоположными знаками мнимой части.
Свойства
$$ (a+bi) + (a-bi) = (a+a) + (b-b)i = 2a $$
Примеры решений
По определению комплексно-сопряженные числа отличаются только противоположностью знака при мнимой части, поэтому меняем плюс на минус и записываем ответ:
$$ overline = 2 — 3i $$
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Найти сумму, разность и произведение комплексно-сопряженных чисел:
$$ z = 1+i ; overline = 1 — i $$
Выполняем сложение чисел:
$$ z cdot overline = (1+i) cdot (1-i) = 1^2 + 1^2 = 1+1=2 $$
Источник: